EB1 is essential during Drosophila development and plays a crucial role in the integrity of chordotonal mechanosensory organs.

نویسندگان

  • Sarah L Elliott
  • C Fiona Cullen
  • Nicola Wrobel
  • Maurice J Kernan
  • Hiroyuki Ohkura
چکیده

EB1 is a conserved microtubule plus end tracking protein considered to play crucial roles in microtubule organization and the interaction of microtubules with the cell cortex. Despite intense studies carried out in yeast and cultured cells, the role of EB1 in multicellular systems remains to be elucidated. Here, we describe the first genetic study of EB1 in developing animals. We show that one of the multiple Drosophila EB1 homologues, DmEB1, is ubiquitously expressed and has essential functions during development. Hypomorphic DmEB1 mutants show neuromuscular defects, including flightlessness and uncoordinated movement, without any general cell division defects. These defects can be partly explained by the malfunction of the chordotonal mechanosensory organs. In fact, electrophysiological measurements indicated that the auditory chordotonal organs show a reduced response to sound stimuli. The internal organization of the chordotonal organs also is affected in the mutant. Consistently, DmEB1 is enriched in those regions important for the structure and function of the organs. Therefore, DmEB1 plays a crucial role in the functional and structural integrity of the chordotonal mechanosensory organs in Drosophila.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The extracellular matrix protein artichoke is required for integrity of ciliated mechanosensory and chemosensory organs in Drosophila embryos.

Sensory cilia are often encapsulated by an extracellular matrix (ECM). In Caenorhabditis elegans, Drosophila melanogaster, and vertebrates, this ECM is thought to be directly involved in ciliary mechanosensing by coupling external forces to the ciliary membrane. Drosophila mechano- and chemosensory cilia are both associated with an ECM, indicating that the ECM may have additional roles that go ...

متن کامل

Drosophila TRPN( = NOMPC) Channel Localizes to the Distal End of Mechanosensory Cilia

BACKGROUND A TRPN channel protein is essential for sensory transduction in insect mechanosensory neurons and in vertebrate hair cells. The Drosophila TRPN homolog, NOMPC, is required to generate mechanoreceptor potentials and currents in tactile bristles. NOMPC is also required, together with a TRPV channel, for transduction by chordotonal neurons of the fly's antennal ear, but the TRPN or TRPV...

متن کامل

Role of the proneural gene, atonal, in formation of Drosophila chordotonal organs and photoreceptors.

The Drosophila gene atonal encodes a basic helix-loop-helix protein similar to those encoded by the proneural genes of the achaete-scute complex (AS-C). The AS-C are required in the Drosophila PNS for the selection of neural precursors of external sense organs. We have isolated mutants of atonal, which reveal that this gene encodes the proneural gene for chordotonal organs and photoreceptors. I...

متن کامل

Genetically similar transduction mechanisms for touch and hearing in Drosophila.

To test the effects of mechanosensory mutations on hearing in Drosophila, we have recorded sound-evoked potentials originating from ciliated sensory neurons in Johnston's organ, the chordotonal organ that is the sensory element of the fly's antennal ear. Electrodes inserted close to the antennal nerve were used to record extracellular compound potentials evoked by near-field sound stimuli. Soun...

متن کامل

Kank Is an EB1 Interacting Protein that Localises to Muscle-Tendon Attachment Sites in Drosophila

Little is known about how microtubules are regulated in different cell types during development. EB1 plays a central role in the regulation of microtubule plus ends. It directly binds to microtubule plus ends and recruits proteins which regulate microtubule dynamics and behaviour. We report the identification of Kank, the sole Drosophila orthologue of human Kank proteins, as an EB1 interactor t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular biology of the cell

دوره 16 2  شماره 

صفحات  -

تاریخ انتشار 2005